Material Models For Thermoplastics In LS-DYNA®
From Deformation To Failure

P. Reithofer, A. Fertschej, B. Hirschmann, B. Jilka, M. Rollant (4a engineering GmbH),
contact: peter.reithofer@4a.at

15th International LS-DYNA® Users Conference,
Detroit 12.6.2018
AGENDA

- introduction 4a
- motivation
- material models
- material characterization
- ...
- Summary & Outlook
4a engineering

- polymer and materials
- product development
- fiber reinforced plastics and composites
- numerical simulation methods
- method and software development
material characterization - services

- efficient high-dynamic testing
- dynamic material behaviour
- plastics, foams, composites, …
- validated material cards ready to use for your crash-simulation
intelligent reliable solutions for plastics, composites, metals, foams, ...

Valimat
- Triaxiality σ_{vm}
- Damage/Failure ε_p
- Anisotropic Φ_p
- Hardening η

Fibermap
- Individual mapping process information

Micromec
- 3D anisotropic material cards

Impetus
- Efficient dynamic testing

from test to validated material cards
Commonly Used Material Models For Plastics

- **MAT_024 - The workhorse** (*MAT_081,*MAT_089,*MAT_123, …)
- **MAT_124 - The hidden**
- **MAT_187 - The plastic expert**

<table>
<thead>
<tr>
<th>Material model</th>
<th>Yield surface</th>
<th>Visco-elasticity</th>
<th>Visco-plasticity</th>
<th>comp./tension symmetry</th>
<th>plastic Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT_024</td>
<td>von Mises</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>0.5</td>
</tr>
<tr>
<td>MAT_124</td>
<td>2x von Mises</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.5</td>
</tr>
<tr>
<td>MAT_187</td>
<td>General over triaxiality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Ph.D-thesis of F. Kunkel

- Injection molded PP T16 (Hostacom XBR 169G)
- specimen milled out in W0 and W90
- classical static and dynamic tests with DIC

The Old School - material characterization as described in the material model

- Tensile
- Shear
- Compression

comparison IMPETUS™ bending
Characterizing mechanical deformation behavior of plastics

The Old School - material characterization as described in the material model

→ no constant loading (triaxiality) and strain rate

© Copyright 4a engineering GmbH - 11.06.2018

P. Reithofer, pres_18061101_pr_eng_INTLSDYNA+P224+PLASTIC
efficient dynamic testing
2004 - motivation

material variety

bending load case

Source: R. Luijikx - Kunststoffmaterialien in der Interieur Funktionsauslegung bei Audi AG, 4a Technologietag 2010
efficient dynamic testing

- desktop testing device
- instrumented high speed testing
 - acceleration → force / displacement
- impact velocity 0.5 – 4.5 m/s
- maximum energy 50 J
efficient dynamic testing

Universal static testing

<table>
<thead>
<tr>
<th>Force [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacement [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

W0, 23°C

0.1 mm/s
1 mm/s
1 m/s
4 m/s

© Copyright 4a engineering GmbH - 11.06.2018
P. Reithofer, pres_18061101_pr_eng_INTL0DYNAR+P224+PLASTIC
reverse engineering

Mean Squared Error

\[MSE(x) = \frac{1}{P} \sum_{i=1}^{P} W_i \left(\frac{F_i(x) - G_i}{S_i} \right)^2 \rightarrow \min \]

Source: Dynamic Material Characterization Using 4a impetus – PPS Conference 2015, Graz
reverse engineering

Source: Dynamic Material Characterization Using 4a impetus – PPS Conference 2015, Graz
from test to material card

*MAT_024

static
dynamic

\[\sigma_{vm} \]

\[\varepsilon_p \]

Hardening
from bending → \textit{MAT}_024

···· averaged test curves
— result of simulation

Component

Asymmetry

Strainrate

Yield

Young’s Modulus

Starting parameter

force [N]
displacement [mm]

\[
v_0 \quad [\text{m/s}]
\]

\begin{align*}
0.0001 & \quad 0.001 \\
1 & \quad 4
\end{align*}

\[
\text{Young’s Modulus}
\]

\[
\text{Yield}
\]

\[
\text{Starting parameter}
\]

\[
\text{Asymmetry}
\]

\[
\text{Component}
\]
from bending → *MAT_024

<table>
<thead>
<tr>
<th>(v) [m/s]</th>
<th>span [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>40</td>
</tr>
<tr>
<td>0.001</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
</tbody>
</table>

- averaged test curves
- result of simulation

resulting yield curves

<table>
<thead>
<tr>
<th>(\dot{\varepsilon})</th>
<th>(\varepsilon)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_1)</td>
<td>(\sigma_1)</td>
<td>(\varepsilon_2)</td>
</tr>
</tbody>
</table>

Component

Asymmetry

Strainrate

Starting parameter

Young’s Modulus

Yield

IN PHYSICS WE TRUST
from test to material card
from tension bending \rightarrow *MAT_124/187

- averaged test curves
- result of simulation

<table>
<thead>
<tr>
<th>Component</th>
<th>Asymmetry</th>
<th>Strainrate</th>
<th>Yield</th>
<th>Young’s Modulus</th>
<th>Starting parameter</th>
</tr>
</thead>
</table>

$V_0 = \begin{cases}
4 &
\text{Dynamic tension bending (clamped bending)} \\
0.001 &
\text{static tensile}
\end{cases}$
MPIP - comparison of results

![Graphs showing force vs. displacement for different materials and conditions.](image-url)
from test to material card
efficient dynamic testing

- Different load cases
 - Bending
 - Tension Bending
 - Compression
 - Puncture
 - Component
 - ...

- High speed camera
 - Sync. recording

- Maximum energy 50 J

- Material Card
 Deformation \rightarrow Failure
Injection mold for material characterization

- DOM & Wall thickness
- Melt- & Weldlines
- Plate 120 x 80 x 2 mm
- Multi-Specimen & Rib & Component
MPIP – from failure → *MAT_ADD_EROSION

- Component
- Strainrate
- Yield
- Young’s Modulus
- Starting parameter
- FAILURE

<table>
<thead>
<tr>
<th>Strainrate</th>
<th>Failure</th>
<th>Trend</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm/s</td>
<td>1.0 mm/s</td>
<td>4.0 mm/s</td>
<td>9.0 mm/s</td>
</tr>
<tr>
<td>0.3 mm/s</td>
<td>1.2 mm/s</td>
<td>4.2 mm/s</td>
<td>9.2 mm/s</td>
</tr>
</tbody>
</table>

- Force [N]
- Stress [MPa]
- Strain [%]
- Displacement [mm]
from failure → Validation on component
from test to material card

Triaxiality

Deformation → Failure

Creep → Static → Crash

ISOTROPIC → ANISOTROPIC

Hardening

Anisotropic

Damage/Failure
Summary & Outlook

- advantages micro mechanical approach
 - model understands \textit{fiber orientation, aspect ratio}
 - simulation process chain considering local anisotropy \textit{process \rightarrow structural}

- Validation results (coupon and component level)
 - Good correlation in deformation behavior
 - promising results in capturing failure \textit{\rightarrow improvement post failure especially shells}

- Outlook
 - failure/damage \rightarrow further research
 - DIC measurement – biaxial behavior
 - Usage for endless fiber reinforced materials
Outlook - Dynamic tensile testing