

# 4a Summer School Day 8

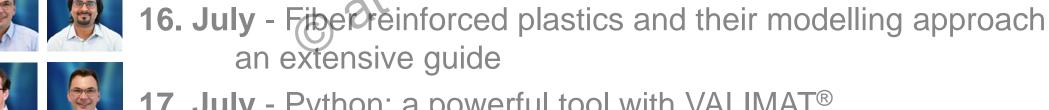


Python: a powerful tool with VALIMAT<sup>®</sup>, user defined material cards/specimen

B. Hirschmann, H. Pothukuchi, Ch. Schober Traboch, 17.07.2020

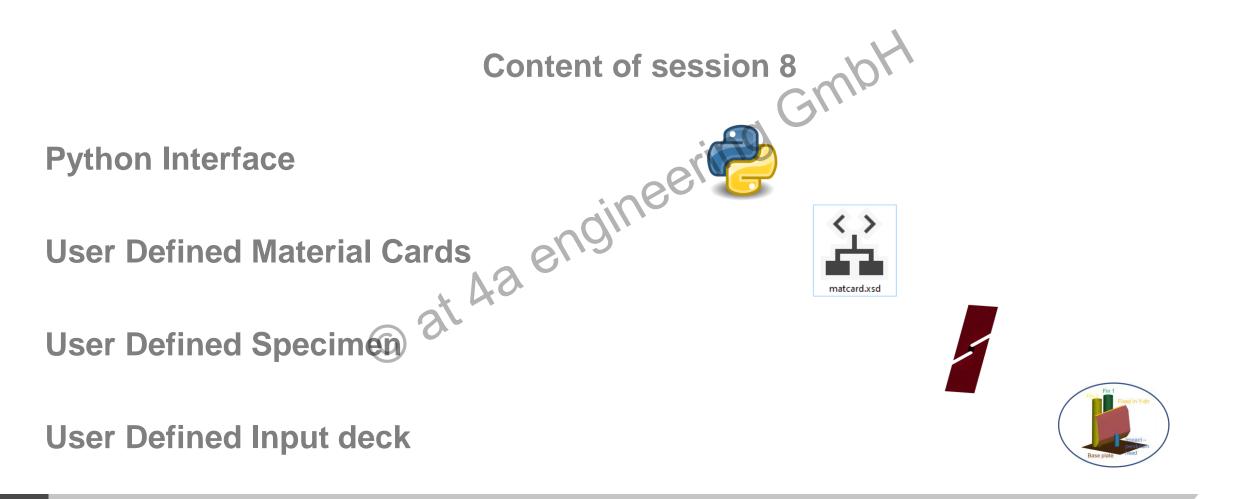







14. July - Evaluating and checking test data interpretation of typical results

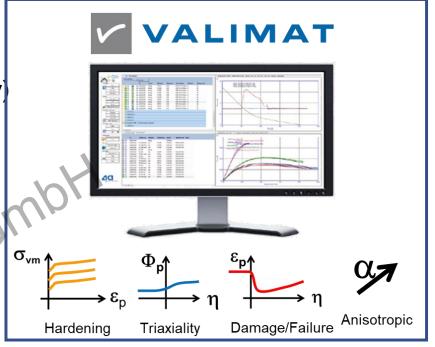


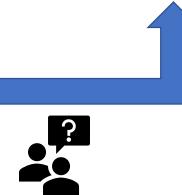

15. July - general yield softace (\*MAT\_187) and other material models, failure approaches and comprehensive Autofit setup

2<sup>nd</sup> week - Advanced topics



17. July - Python: a powerful tool with VALIMAT<sup>®</sup>, user defined material cards/specimen






# What is possible with the Python interface

- Access all values that are stored in the VALIMAT<sup>®</sup> database (read-only)
- Read the raw measurement data for custom evaluation
- Read the evaluated data
- Read the simulation results
- Add custom packages that are not distributed with Valimat





# Setting up python in VALIMAT®

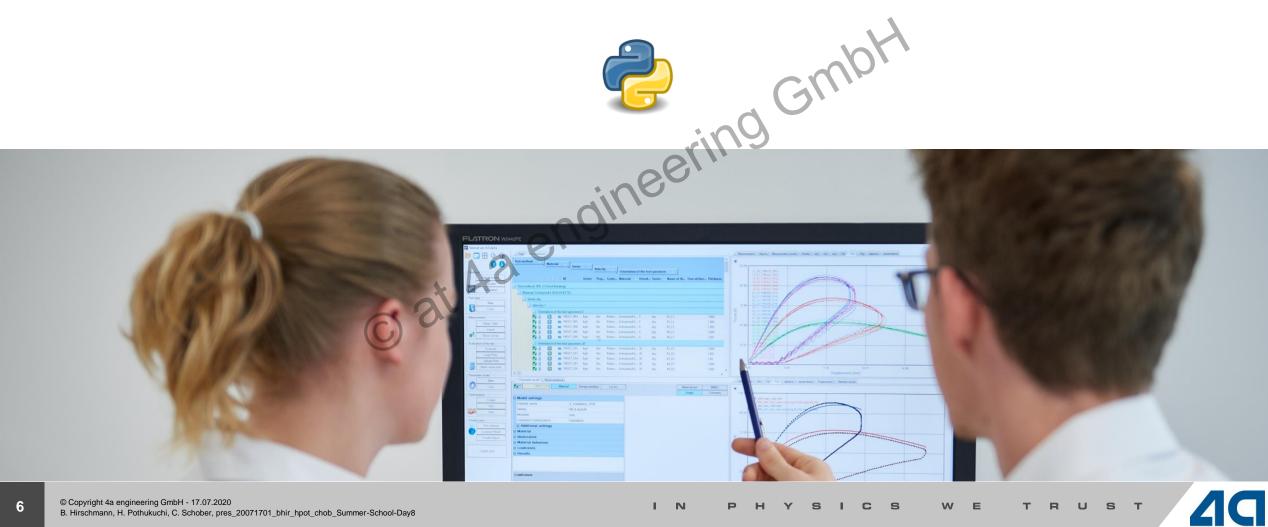


| ∃ Links/references                 |                                |   |
|------------------------------------|--------------------------------|---|
| System links                       |                                |   |
| Temp                               | C:\Temp                        |   |
| Python executable                  | C:\Python27\python.exe         |   |
| Python executable for user-scripts | python                         |   |
| Python scripts for Windows         | \settings\python               |   |
| Python scripts for Linux           | path/to/global_settings/python |   |
| Folder for Templatedatabases       |                                | = |

| External programs     |                                   |
|-----------------------|-----------------------------------|
|                       |                                   |
| Video Temp            | C:\EXF1TEMP                       |
| 7zip                  | C:\Programme\7-Zip\7z.exe         |
| Batchrunscript        |                                   |
| Test python packages  | .\python\evaluation_scripts_tests |
| Model python packages | .\python\evaluation_scripts_model |
|                       | C a                               |

 $(\mathbf{U})$ 

# Überschrift


- Make sure that a Python 2.7 executable is properly linked in System links.
  - Python scripts can be made callable from the context menu for the test cases and the model cases.
  - The path to the script directory is set at:
    - Test python packages
    - Model python packages:

In **VALIMAT 3.8** Python will be included in the local software installation.

No additional installation necessary!



# Live demo Example export\_csv.py



# Setting up python in VALIMAT®

| Test / Test database                                                 |                                                               |                                                                                             |
|----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Temperature of the test specimen                                     |                                                               | A SP/DP/QS A Velocity A me Customer Material Series A                                       |
| Temperature of the test specimen: 23                                 |                                                               |                                                                                             |
| Series: Abmusterung3_Maier                                           |                                                               |                                                                                             |
| Test method: TT (Tensile test)                                       |                                                               |                                                                                             |
| □ SP/DP/QS: SP                                                       |                                                               |                                                                                             |
| E Velocity: 3                                                        |                                                               |                                                                                             |
| 🐼 📝 🖪 📑 🚍 20061                                                      | New<br>Copy                                                   | 4a         Daplen_PPE         Abmusterun           4a         Daplen_PPE         Abmusterun |
|                                                                      | Select model data sets<br>Approved<br>Not approved<br>Invalid |                                                                                             |
|                                                                      | Lock<br>Mark for deletion<br>Delete<br>Backup data set (7zip) | vaeuc                                                                                       |
| Parameter model* Model database      Series      ID     Dataset name | Measurement<br>Evaluate<br>XY-plot<br>Mean value curves       | teria na Solver Sy E Material so M                                                          |
|                                                                      | Database 🕨                                                    |                                                                                             |
| l                                                                    | Python scripts                                                | create_mc_video.py                                                                          |
|                                                                      | activeModell                                                  | export_csv.py                                                                               |

# Überschrift

To execute a python script:

- 1. Select the Tests or Models of interest
- 2. Open the context menu (RMB)
- 3. The available Python files can be found at "Python scripts"



# General structure of a python script for VALIMAT®

- Basic structure can be seen in the prototype file (\_prototype.py\_)
- Edit the function main according to your needs
- The part that should be altered is enclosed in a block of hash letters



8

# Main function call

#### command line arguments

- VALIMAT<sup>®</sup> MDB directory path
- tabletype (either curvestore or model)
- VALIMAT<sup>®</sup> database name
- ids

9

#### The main function:

aring Gmbt def main(base\_path, table\_type, table\_name, work\_dir, db\_path, ids):

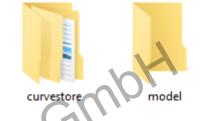
- base\_path: location of VALIMAT® MDB
- table\_type: either TESTS or ANALYSIS
- table\_name: VALIMAT<sup>®</sup> database name "4a\_impetus.mdb"
- work\_dir: base\_path+table\_type
- db\_path: base\_path+table\_name
- ids: list of test or model ids (['190508 013', '190508 014', '190508 015'])

190508\_013

190508\_014 190508\_015

23

23


23

# VALIMAT<sup>®</sup> database structure overview

- curvestore
  - Raw data of measurement
  - Channels
  - Evaluated test curves
  - Measurement videos/pictures
- model
  - input files
  - material cards for optimization with lsopt
  - average curves for optimization (oavg "casename"." specifier", in simulation units)

neerin

- 4a\_impetus\_sampling directory (lsopt results)
- case\_" casename" (lsopt results)
  - **StageResults**
  - directories containing the simulation models
    - .xy simulation curve files, in simulation units







4a impetus.ldb 4a impetus.mdb

н N US S



### **VALIMAT®** database access

Be sure to have the following executable in your script directory:

- extract\_values\_from\_db.exe
- In your script do the following:

```
def main(base_path, table_type, table_name, work_dir, db_path, ids):
    extract_call = [db_extract, db_path, base_path, table_type]
    extract_call.extend(ids)
    subprocess.call(extract_call)
    data = readDBData(base_path, table_name, ids)
    for curr_test in data:
        sssr=curr_test.stressstrainstrainrate
```

## VALIMAT<sup>®</sup> 3.8 database access

The new VALIMAT<sup>®</sup> module allows read only access to the database

Database Access for tests:

Import the VALIMAT<sup>®</sup> module

from Valimat import \* from Valimat.DatabaseAccess import \*

meering Gmbt Examplary database access for a test script

```
def main(base_path, table_type, table_name, work_dir, db_path, ids):
    '''Access Database values and curves for TESTS
    1.1.1
    DB = Database(db_path) #create a database object of the given Valimat Database
```

tests = DB.GetTests(ids) #Make a list containing the reference to the given test objects for test in tests:

```
curr tc force curve=test.Curves.Force #measurement curve of current test in current case
print('Young\'s modulus of '+str(test.ID)+' is '+str(test.RES MODUL))
```

### VALIMAT<sup>®</sup> 3.8 database access

Examplary database access for a model script

```
def main(base path, table type, table name, work dir, db path, ids):
    '''Access Database values and curves for ANALYSIS
    1.1.1
   DB = Database(db path) #create a database object of the given Valimate
   models = DB.GetModels(ids) #Make a list containing the reference to the given model objects
   for model in models:
       for case in model.CASES:
            curr_sc_force_curve=case.Simulation.CurveForce is inulation curve of current case
           for test in case.Tests:
               curr tc force curve=test.Curves.Force #measurement curve of current test in current case
               print('Young\'s modulus of '+str(test.ID)+' is '+str(test.RES_MODUL))
                             at 43 Éi
```

### **Summary**

- Python can be used to extend Valimat
- Almost no limit for the creativity of the user
- 2 Examples are delivered with Valimat
  - export\_csv.py
  - create\_mc\_video.py
- © at Aa engineering GmbH Prototype file for a rapid start into the development
- Easy to start the script out of Valimat

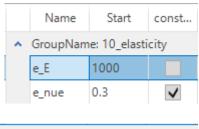
# **User Defined Material Cards in VALIMAT®**





### **User Defined Material Cards - Objective**

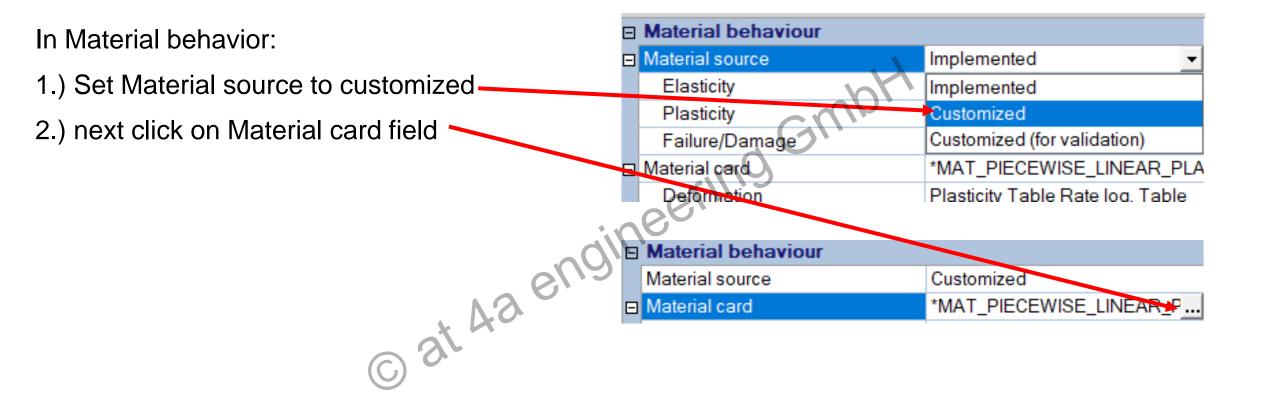
- Provide an overview of the capabilities of VALIMAT<sup>®</sup> user material card feature
- Show how to use user defined material cards
- Describe the elements of a user defined material card.
- Provide some tips for implementing your own user defined material card


Gm

# **Capabilities of VALIMAT®** .xml material card format

- Add other material models
- Use standard VALIMAT<sup>®</sup> Design variable groups
  - Transfer from model to another (Change solver, material card,...) GM
- Enter user defined variables
- Use implemented curves/tables for hardening, failure,

| _ |                                     |                    |   |
|---|-------------------------------------|--------------------|---|
|   | Damage/Failure                      | Add Erosion DIEM   |   |
|   | Materialcard ID                     | 1000000            |   |
|   | Density                             | 1000               |   |
|   | Yield behavior                      | vonMISES           |   |
|   | Function (Hardening, Elastic curve) |                    |   |
|   | Curve 1                             | 4a model           | • |
|   | Strain range upto                   | 4a model           | ^ |
|   | Sampling points                     | 4a model (nue 0.5) |   |
|   | Bias factor                         | 4a model (nue)     |   |
|   | Strain rate dependency              | scale curve 1      |   |
|   | Strain rate dependency curve        | Trilinear          |   |
|   | VP                                  | polymer law        |   |
|   | 1st strain rate                     | modified G'Sell    |   |
|   | 2nd strain rate                     | Ludwik             |   |
|   | 3rd strain rate                     | Bergström          |   |
| C | Curve 1                             | Hollomon           | ~ |
| _ |                                     |                    | _ |


|   | Strain rate dependency                           | Table              | ^ |
|---|--------------------------------------------------|--------------------|---|
|   | <ul> <li>Strain rate dependency curve</li> </ul> | None 🗸             |   |
|   | VP                                               | Plastic strain     |   |
|   | 1st strain rate                                  | 0.0001             |   |
|   | 2nd strain rate                                  | 0.001              |   |
|   | 3rd strain rate                                  | 0.01               |   |
|   | 4th strain rate                                  | 0.1                |   |
|   | 5th strain rate                                  | 1                  |   |
| 2 | 6th strain rate                                  | 10                 |   |
| Υ | 7th strain rate                                  | 100                |   |
|   | 8th strain rate                                  | 1000               |   |
|   | Fracture                                         | None               |   |
|   | Ductile Damage Settings                          | Johnson Cook       |   |
|   | Shear Damage Settings                            | Cowper Symond      |   |
|   | FLC Damage Settings                              | Kang               | ¥ |
| S | Strain rate dependency curve                     | Power Law (G'Sell) |   |
|   |                                                  |                    |   |



| ^ | GroupName: 50_failure |    |  |
|---|-----------------------|----|--|
|   | xf_NAHSV              | 20 |  |

| □ Fracture                 | Damage                           |
|----------------------------|----------------------------------|
| Ductile Damage Settings    | Piecewise linear interpolation 💌 |
| lower triax value          | None                             |
| upper triax value          | plastic equivalent strain        |
| step size triax            | simple criteria                  |
| Shear Damage Settings      | 4a piecewise linear              |
| FLC Damage Settings        | Johnson Cook                     |
| Strainrate Damage Settings | mod Xue-Wierzbicki               |
| Postfracture               | Xue-Wierzbicki                   |
| 🗉 Loadcases                | Mohr-Coulomb Shell               |
| Dustile Demons Cattings    | Piecewise linear interpolation   |
| Ductile Damage Settings    | Mohr-Coulomb                     |

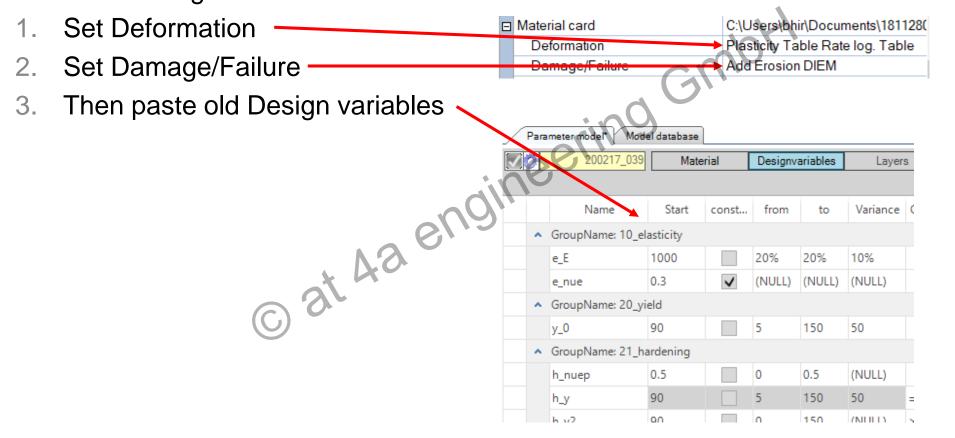
### How to use .xml material cards



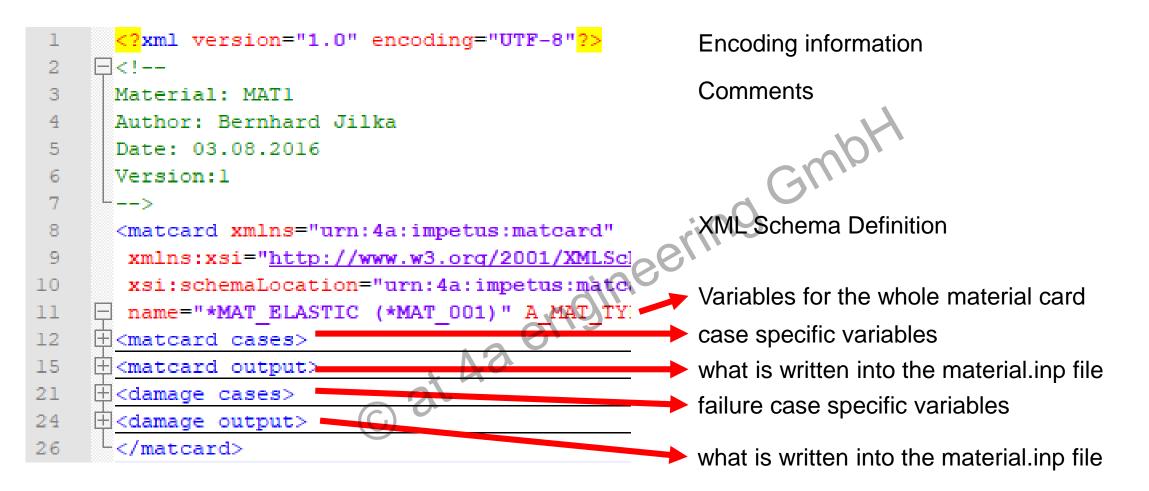


### How to use .xml material cards

#### 3.) select the .xml material card file


| ✓ Öffnen                                           |                                      |                  |              |           |                 | ×    |              |
|----------------------------------------------------|--------------------------------------|------------------|--------------|-----------|-----------------|------|--------------|
| $\leftarrow$ $\rightarrow$ $\checkmark$ $\uparrow$ | 🧧 « material_card_xml > LSDYNA > MA  | AT_024           |              | עם_"MAT_0 | 24" durchsuchen | Ą    |              |
| Organisieren 🔻                                     | Neuer Ordner                         |                  |              |           |                 | . ?  | Y Y          |
| 🖺 D(# ^                                            | Name                                 | Änderungsdatum   | Тур          | Größe     |                 |      |              |
| 📰 Bi 🖈                                             | 7011_MAT_024.xml                     | 18.09.2019 14:42 | XML-Dokument | 25 KB     |                 |      | C            |
| 15 🖈                                               | 19091801_bhir_7011_MAT_024.xml       | 18.09.2019 14:52 | XML-Dokument | 25 KB     |                 |      |              |
| 15 🖈                                               | 19112001_bhir_7011_MAT_024.xml       | 22.11.2019 15:20 | XML-Dokument | 25 KB     |                 |      | $\cap$       |
| 19 🖈 👘                                             |                                      |                  |              |           |                 |      | $\mathbf{S}$ |
| _ pc≉                                              |                                      |                  |              |           |                 |      |              |
| p p 🖈                                              |                                      |                  |              |           | ree             |      |              |
| bo#                                                |                                      |                  |              | * •       | 10              |      |              |
| be#                                                |                                      |                  |              |           |                 |      |              |
| aust                                               |                                      |                  |              | 'ADA'     | *               |      |              |
| 15 🖈                                               |                                      |                  |              |           |                 |      |              |
| 1.1 🗸                                              |                                      |                  |              | 0         |                 |      |              |
| <b>1</b> .1 <b>V</b>                               |                                      |                  |              |           |                 |      |              |
|                                                    | Dateiname: 19112001_bhir_7011_MAT_02 | 4.xml            |              | ✓ matcar  | ds (*.xml)      | ~    |              |
|                                                    |                                      | - 2              |              | Öff       | nen Abbre       | chen |              |
|                                                    |                                      | (C)              |              |           |                 |      |              |

IN PHYSICS WE TRUST




# How to use .xml material cards (tips for switching)

4.) Set the correct settings for user defined material card (old settings are unfortunately lost)
 Do the following:



### xml schema







# **IMPETUS<sup>®</sup>** vs ls\_opt formula

**impetus\_formula** are used to create the **static** part of a material card (no changes in the optimization runs)

- Use **only** VALIMAT<sup>®</sup> database variables
- Examples:

```
<impetus formula formula="db mattyp"/>
<impetus_formula_formula="ID_MAT" format="0D8s"/
<impetus formula formula="db rho" format="3D10S"/>
```

Is\_opt formula create the dynamic part of a material card (Isopt replaceable code, dependant from design at 42 variables)

- Use only LS-Opt variables
- Examples:

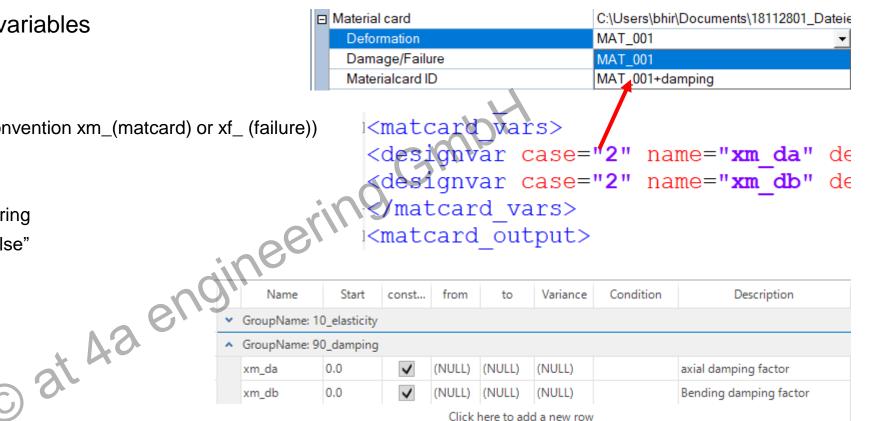
```
<ls opt formula="e E*US stress" format="0D10S"/>
<ls opt formula="e nue" format="0D10S"/>
```

#### unit systems

- In VALIMAT<sup>®</sup> we support 3 types of unit systems (Variables are declared in t-mm-sec-MPa):
- db\_vars are always converted to current unit system!
- symmetry or ... The variables are dependent from the unit system and the time scaling. ra eugi,
- Example: Young's modulus conversion

<ls opt formula="e\_E\*US\_stress" format="0D10S"/>

| Ξ | Idealization      |                  |  |
|---|-------------------|------------------|--|
|   | System of units   | kg-mm-msec-GPa 🔹 |  |
|   | Solver            | SI(kg-m-sec-Pa)  |  |
| Ð | Inputdeck         | t-mm-sec-MPa     |  |
|   | Symmetry of model | kg-mm-msec-GPa   |  |


| conversion factors |              |  |
|--------------------|--------------|--|
| US_length          | US_stiffness |  |
| US_time            | US_force     |  |
| US_density         | US_energy    |  |
| US_strainrate      | US_stress    |  |
| US_velocity        |              |  |

### user variable feature

Add user variable to the LS-Opt variables

- Define in matcard vars
  - case:
  - name: variable name (naming convention xm (matcard) or xf (failure))
  - description: Description
  - group: GroupName
  - position: unique position for ordering
  - static:constant either "true" or "false"
  - startvalue: Start
  - lowerbound: from
  - upperbound: to
  - optimizationwindow: Variance
  - boundary\_condition: Condition
- Use in ls\_opt formula by name

```
<ls opt formula="xm da" format="0D10S"/>
```



н

# table input (arrays)

- epp (equivalent plastic/total strain)
  - strain range upto defines the endpoint of the curve
  - Sampling points defines number of points in the curve
  - Bias factor defines a bias to the front end of the curve
    - Bas factor=1: equally distributed points
- triax (stress triaxiality)
  - Iower triax value to upper triax value with step size triax
  - typical values: plane stress state [-2/3;2/3;1/9]
- strain rate dependency:
  - db\_epspkt1 → db\_epspkt8
  - typical values: (LS-DYNA/PAMCRASH [0.001;1000;0;...]; ABAQUS [0.0;0.001;1000;...])

|              | Yield behavior                      | vonMISES       |
|--------------|-------------------------------------|----------------|
|              | Function (Hardening, Elastic curve) |                |
|              | Curve 1                             | Bilinear       |
| ve           | Strain range upto                   | 2.5            |
|              | Sampling points                     | 50             |
| ve           | Bias factor                         | 10             |
| CUUD         | Fracture                            | Damage         |
|              | Ductile Damage Settings             | Mohr-Coulomb - |
| $\dot{\rho}$ | lower triax value                   | -0.66          |
|              | upper triax value                   | 0.66           |
| riax         | step size triax                     | 0.11           |
| inec         |                                     |                |

| Strain rate dependency       | Table          |
|------------------------------|----------------|
| Strain rate dependency curve | None           |
| VP                           | Plastic strain |
| 1st strain rate              | 0.0001         |
| 2nd strain rate              | 0.001          |
| 3rd strain rate              | 0.01           |
| 4th strain rate              | 0.1            |
| 5th strain rate              | 1              |
| 6th strain rate              | 10             |
| 7th strain rate              | 100            |
| 8th strain rate              | 1000           |

## curve definition (arrays)

- hardening curve: sig; s2g; s3g ← result of Curve 1;2;3 (epp)
  - number of curves: "A\_MAT\_TYPE\_PLASTIC\_enum"=
    - 0: "none\_0"
    - 1: "vonMises\_11"; "vonMises\_12"; "Hillr2D\_51"; "HillR3D\_52"; "Hill3D\_53"; "Hill2D\_54"; "RaghavaHill2D\_55"
    - 2: "DruckerPrager\_21"; "Raghava\_22"
    - 3: "GenYLD3\_31"; "GenYLD5\_32"
- - availability depends on "A\_MAT\_FRAC\_DIEM\_DUCTILE"

| 181128   |  |  |  |
|----------|--|--|--|
|          |  |  |  |
| None     |  |  |  |
|          |  |  |  |
|          |  |  |  |
| vonMISES |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |

| Fracture                | Damage       |  |  |  |
|-------------------------|--------------|--|--|--|
| Ductile Damage Settings | Mohr-Coulomb |  |  |  |
| lower triax value       | -0.66        |  |  |  |
| upper triax value       | 0.66         |  |  |  |
| step size triax         | 0.11         |  |  |  |

\*See "matcard.xsd" for available options and "dv\_and\_curve\_def.xml" for VALIMAT names, variables and function definitions.

### impetus\_material curve feature

impetus\_material curve definitions allow the creation of curves xVal: arithmetical expression with an array yVal: arithmeticel expression with an array

format="10D20S"/> <impetus materialcurve xVal="epp" yVal="sig"</pre>

Function (Hardening, Elastic curv Bilinear Curve 1 lcid sidr sfa sfo offa offo dattyp 2.5 Strain range upto 1000001 0 1 1 0 0 Sampling points 50 ŝ# al 01 10 Bias factor <<(0)\*1+0:20>><<((h y+h ET\*0)\*(1+1/v p\*log(max(0.0001,v epspkt)/v epspkt)))\*1+0:20>>



### impetus\_material curve feature

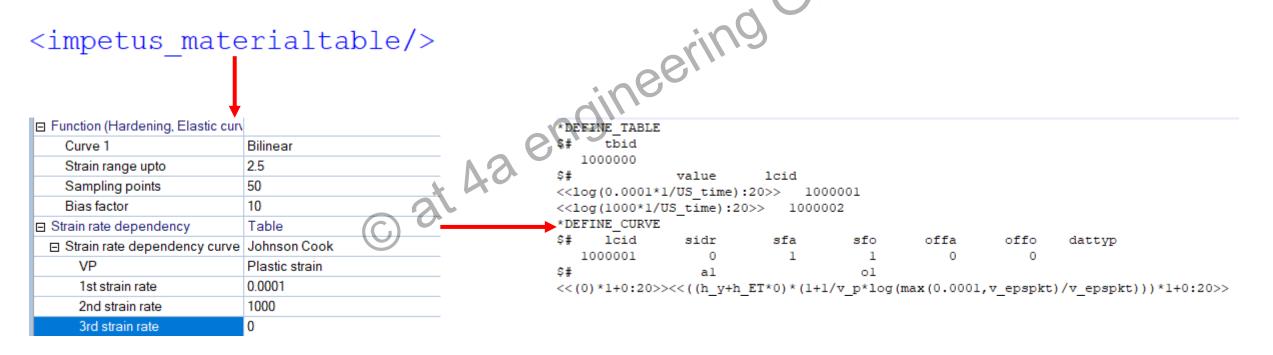
#### Example: MAT\_SAMP-1

name="\*MAT\_SAMP-1 (\*MAT\_187) log Table R9.3+" A\_MAT\_TYPE\_ELASTIC="linearElastic\_0" A\_MOD\_IDEALIZATION="all\_2" A\_SOLVER="LSDYN
| <matcard cases>

<case id="1" name="vonMises (non associated)" A MAT\_ELASTIC\_CURVE="linearElastic\_1" A MAT\_TYPE\_PLASTIC="vonMises 11" A MAT\_TYPE <case id="2" name="Pressure dependent (Drucker-Prager)" A MAT\_ELASTIC\_CURVE="linearElastic\_1" A MAT\_TYPE\_PLASTIC="Raghava\_22" <case id="3" name="Parabolic yield surface (Shear given)" A MAT\_ELASTIC\_CURVE="linearElastic\_1" A MAT\_TYPE\_PLASTIC="GenYLD3\_31 <case id="5" name="Parabolic yield surface (Biax-tension given)" A MAT\_ELASTIC\_CURVE="linearElastic\_1" A MAT\_TYPE\_PLASTIC="GenYLD3\_31 <case id="4" name="General yield surface" A MAT\_ELASTIC\_CURVE="linearElastic\_1" A MAT\_TYPE\_PLASTIC="GenYLD5\_32" A MAT\_TYPE\_VIS

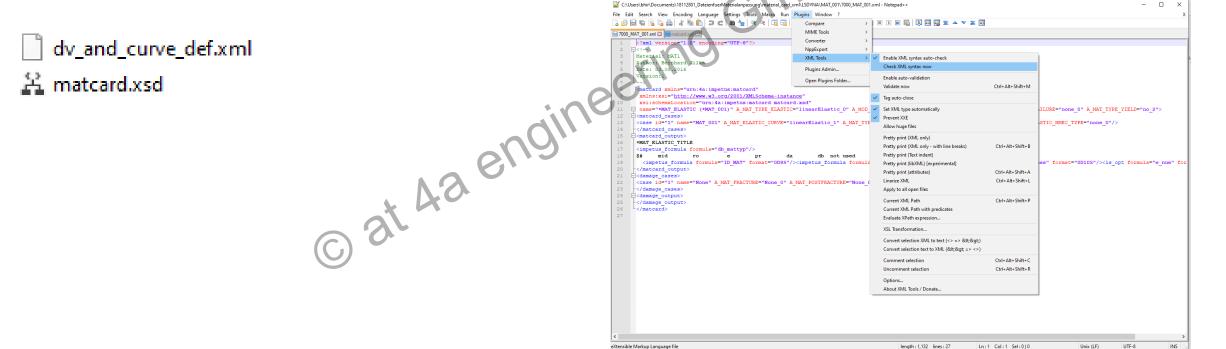
|                                      | activates                                                                                                   |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Material card                        | *MAT_SAMP-1 (*MAT_187) log Table R9.3                                                                       |
| Deformation                          | *MAT_SAMP-1 (*MAT_187) log Table R9.3<br>Pressure dependent (Drucker-Prager) ▼<br>vonMises (non associated) |
| Damage/Failure                       | vonMises (non associated)                                                                                   |
| Materialcard ID                      | Pressure dependent (Drucker-Prager)                                                                         |
| Density                              | Parabolic yield surface (Shear given)                                                                       |
| Yield behavior                       | Parabolic yield surface (Biax-tension given)                                                                |
| Function (Hardening, Elastic curve   | e fo General yield surface                                                                                  |
| Curve 1                              | Bilinear                                                                                                    |
| Curve 2                              | scale curve 1                                                                                               |
| (impetus_materialtable/>             | © C                                                                                                         |
| XMLIF mcase="2-4">                   |                                                                                                             |
| DEFINE_CURVE                         | adds this curve to car                                                                                      |
|                                      | ia sio offa offo dattyp                                                                                     |
| Cimpetus_formula formula="ID<br># a1 | FUNC10" format="0D10S"/> 0 1.0 1.0 0.0 0.0 0                                                                |
|                                      | "epp" yVal="s2g" format="10D20S"/>                                                                          |
| (/XMLIF>                             | opp fide big formed fobros //                                                                               |

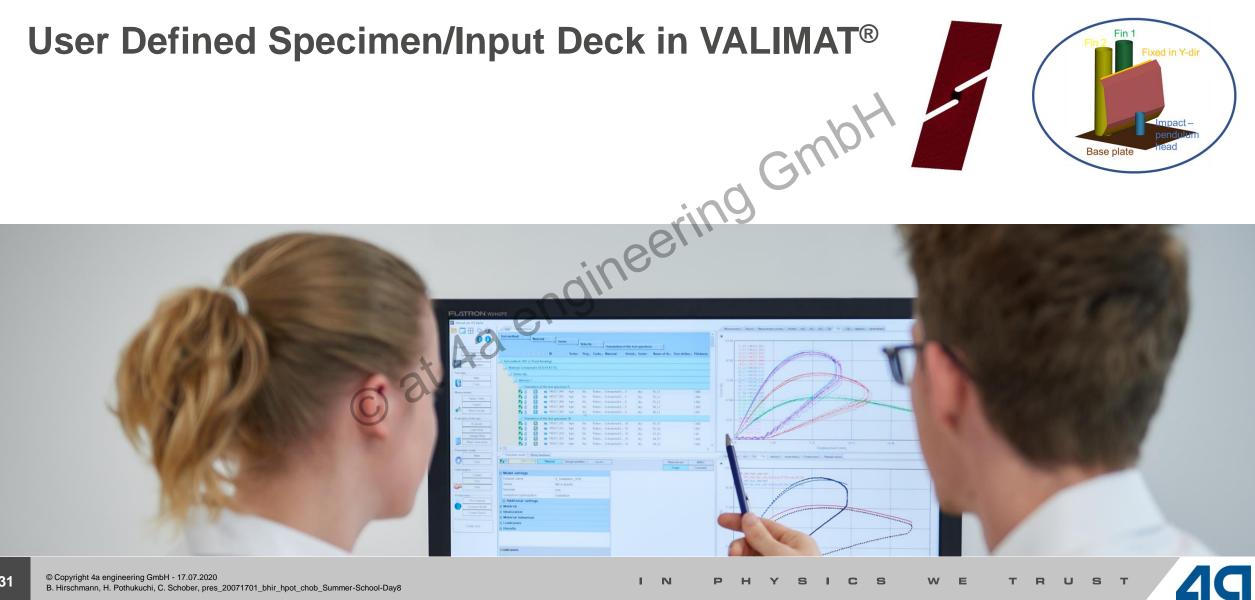
IN PHYSICS WE TRUST


### impetus\_materialtable feature

material table definitions allows for fast viscoplasticity definition

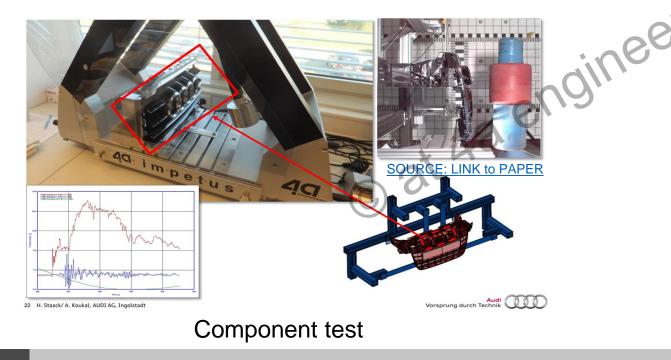
It creates a table definition with strain rates and hardening curve ids

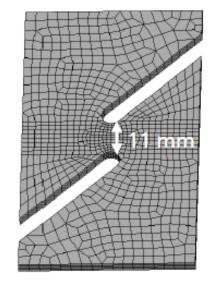

The curves are a combination of the first material curve and the strain rate dependency model


Example: Bilinear hardening and Johnson Cook strain rate dependency



# Tips for implementing a new material card for VALIMAT®

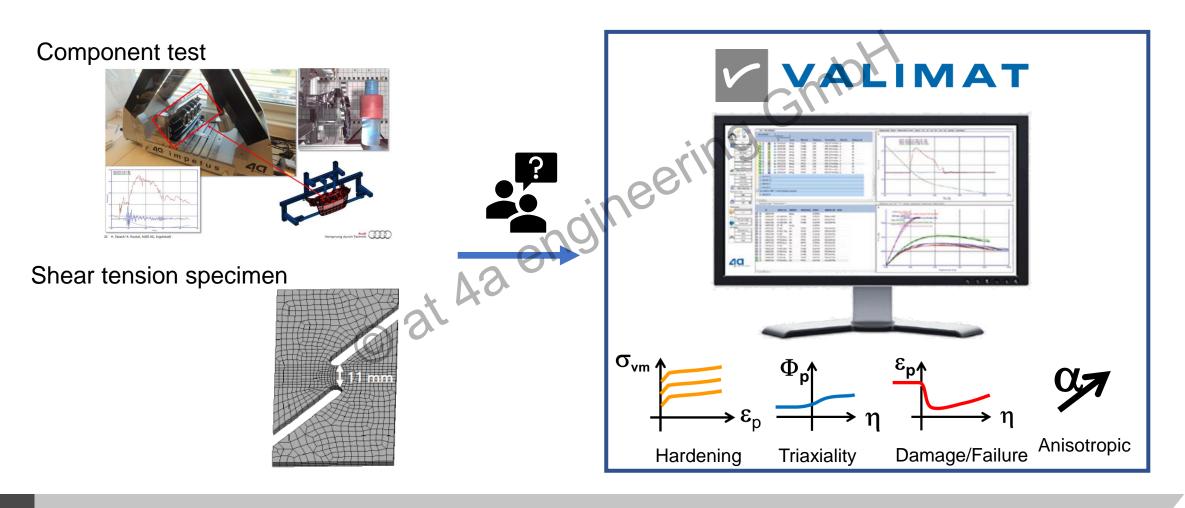

- For the text editor we use Notepad++, which has the plugin "XML tools" that allows to check the file for compliance with the schema file (Have a copy of "matcard.xsd" in the working directory).
- Doesn't detect all problems!
- Variable definitions are in the dv\_and\_curve\_def.xml






# **User Defined Specimen/Input Deck - Introduction**

- Why do we need a user-defined specimen / input deck
  - To work with specimens that are not already implemented in VALIMAT<sup>®</sup>
  - User-defined specimen  $\rightarrow$  Only the specimen type is new and needs to be incorporated in VALIMAT<sup>®</sup>
  - User-defined input deck  $\rightarrow$  Flexible  $\rightarrow$  for component tests as an example






Shear tension specimen

### Introduction

How do we include new specimen types or custom test setups in VALIMAT<sup>®</sup>? 





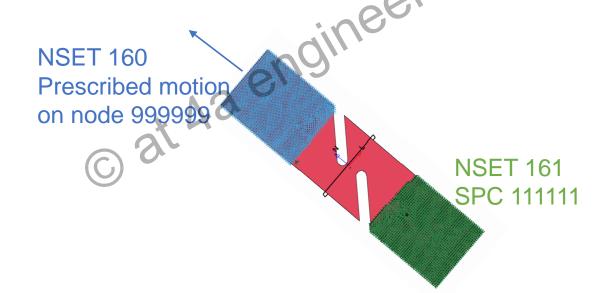
### Implementation in VALIMAT<sup>®</sup>

- In addition to the manual (chapter 5.4.3), the following presentation should help the user to create a user defined input deck and a user defined specimen
- You will need the following files:
  - File with geometry, boundary conditions, etc. (can be split into several files)
  - Conf-file with commands for VALIMAT<sup>®</sup> for user defined inputdeck
     Coat Aa engineering



### Implementation in VALIMAT<sup>®</sup>

- Idealization → Inputdeck switch to 'customized' and name the .Conf file as Inputdeck
- All other files (Material, Geometry, Scripts) also need to be in this directory
- For a User-defined specimen → Switch to user defined specimen under Loadcases → Additional Settings

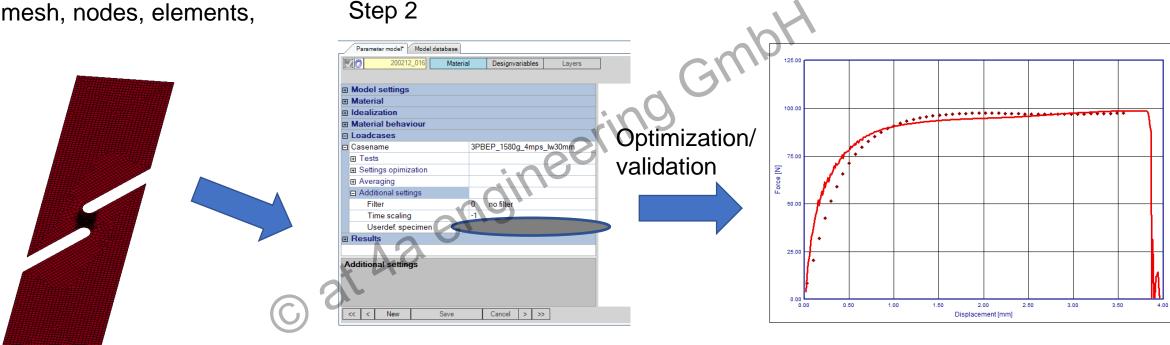

|                            |          |                 |        |                     |                   |                       |                                         | 5                               |   |              |         |
|----------------------------|----------|-----------------|--------|---------------------|-------------------|-----------------------|-----------------------------------------|---------------------------------|---|--------------|---------|
| Parameter model* Model dat | tabase   |                 |        |                     |                   |                       |                                         |                                 |   |              |         |
| 200213_013                 | Material | Designvariables | Layers | 7                   | Materialcard MMEC |                       | Parameter model, Model database         |                                 |   |              |         |
|                            |          |                 |        |                     | Image Comment     |                       | 200212_016                              | Material Designvariables Layers |   | Materialcard | MMEC    |
| Model settings             |          |                 |        |                     |                   | -                     |                                         |                                 |   | Image        | Comment |
| Material                   |          |                 |        |                     |                   |                       | Model settings                          |                                 |   |              |         |
| Idealization               |          |                 |        |                     |                   |                       | Material                                |                                 |   |              |         |
| System of units            | t-m      | m-sec-MPa       |        |                     |                   |                       | Idealization                            |                                 |   |              |         |
| Solver                     | LS       | DYNA            |        |                     |                   |                       | Material behaviour                      |                                 | _ |              |         |
| □ Inputdeck                | Cus      | tomized (a)     | -      |                     |                   | $\mathbf{\nabla}$     | Loadcases                               | 20050 1500 Amerika 1.20         |   |              |         |
| Inputdeck                  |          |                 |        |                     |                   |                       |                                         | 3PBEP_1580g_4mps_lw30mm         | _ |              |         |
| Symmetry of model          | Ful      | model           |        |                     |                   |                       | Settings opimization                    |                                 | - |              |         |
| Idealization type          | She      | ell             |        |                     |                   |                       | Averaging                               |                                 | - |              |         |
| Element size               | 2        |                 |        |                     | AL .              |                       | <ul> <li>Additional settings</li> </ul> |                                 | - |              |         |
| Additional settings        |          |                 |        |                     | 0                 |                       | Filter                                  | 0 no filter                     | - |              |         |
| Material behaviour         |          |                 |        |                     |                   |                       | Time scaling                            | -1                              | - |              |         |
| Loadcases                  |          |                 |        |                     |                   |                       | Userdef. specimen                       |                                 |   |              |         |
| Results                    |          |                 |        |                     |                   |                       | Results                                 |                                 |   |              |         |
|                            |          |                 |        |                     |                   |                       |                                         |                                 | 1 |              |         |
| Inputdeck                  |          |                 |        | Additional settings |                   |                       |                                         |                                 |   |              |         |
|                            |          |                 |        |                     |                   |                       | Additional settings                     |                                 |   |              |         |
|                            |          |                 |        |                     |                   |                       |                                         |                                 |   |              |         |
|                            |          |                 |        |                     |                   |                       |                                         |                                 |   |              |         |
| < < New Save Cancel > >>   |          |                 |        |                     |                   | < < New Sav           | /e Cancel > >>                          |                                 |   |              |         |
|                            |          |                 | -      |                     |                   |                       |                                         |                                 |   |              |         |
| User defined input deck    |          |                 |        |                     |                   |                       | Lloor defined                           | danaaimaa                       |   |              |         |
|                            |          |                 |        |                     |                   | User defined specimen |                                         |                                 |   |              |         |



# **Overview – User defined input specimen**

General structure

- The test database is updated with the required fields from the tests
- The tests are linked in the model database with the correct settings for the averaging parameters
- Check the optimization curve generated from all the test results
- Carefully check for the entry in write part/section in the Idealization → Additional settings
- The elements in the user defined specimen mesh are renumbered and the right node set IDs are referenced in the \*DATABASE\_OUTPUT → displayed in VALIMAT<sup>®</sup>




# **Overview – User defined input specimen**

General structure

A shear tension specimen that is not implemented in VALIMAT<sup>®</sup>  $\rightarrow$  How do we use the user defined specimen feature to incorporate it in the software.

Step 1 : mesh, nodes, elements, sets



Renumbered PIDs, setIDs VALIMAT<sup>®</sup> manual



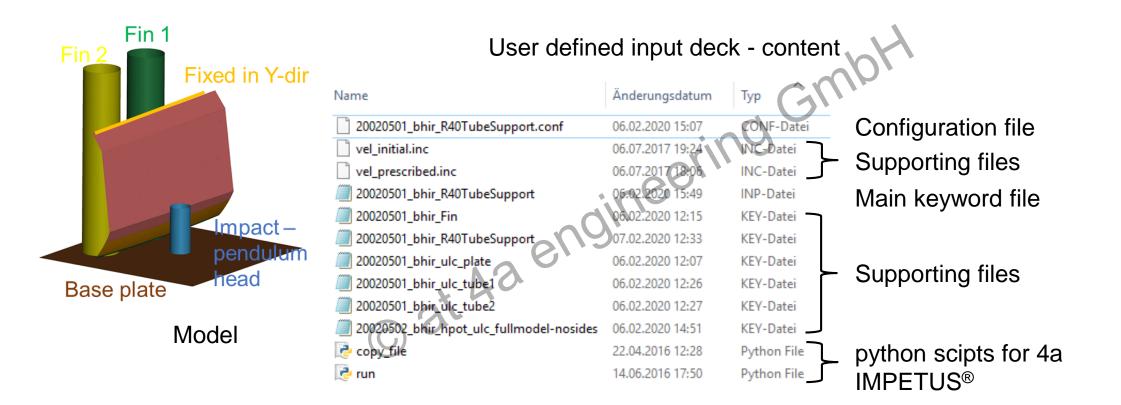
# Summary

- VALIMAT<sup>®</sup> plots depending on the load case and settings the following simulation results:
- For 3-point- bending tests:
  - Displacement of the node with the id 200000
  - Force: the contact force between the fin and the sample
  - stress/strain/strain rate results from the element with id 1 000 000 (Works for the implemented material models. For other materials the stored history variables might differ.)
  - Necessary Sets 140 & 141 (half model 150, 151; quarter model 152)
- Tensile test:
  - global displacement of the node with the id 200000 or 999999
  - local displacement: difference between node 999997 and 999998 for full model, 2\*displacement 999998 for half and quarter model
  - Force: solver dependent either spc reaction forces or cross section forces
  - stress/strain/strain rate results from the element with id 1000000 (Works for the implemented material models. For other materials the stored history variables might differ.)
  - Necessary Sets 140,141, 160 & 161 (half model 150, 151; quarter model 152)

N PHYSICS WE TRUS

# **Overview – User defined input deck**

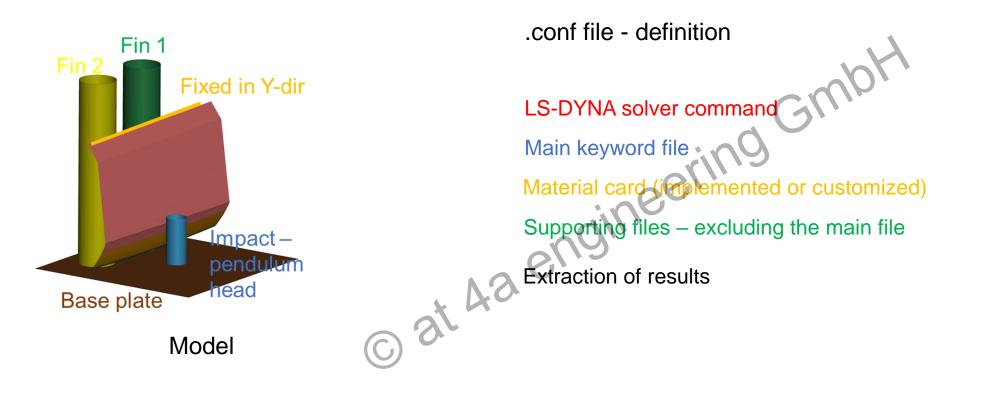
General structure


- A template folder containing:
  - A <u>configuration file</u> which will be selected in VALIMAT<sup>®</sup>(<u>\*.conf</u>)
  - The <u>main keyword file</u> (suffix not a condition, but for readability a solver specific suffix is advised: \*.k or \*.key (LS-DYNA); \*inp (ABAQUS), \*.pc (PAMCRASH))
  - <u>Conditional include files</u> with the suffix <u>\*.inc</u>. Commands <u>in the main keyword file</u> will lead to the inclusion of a subset of all the \*.inc files in the main keyword file. \*.inc references in \*.inc references will have <u>no effect</u>. This allows for example to handle solid and shell idealization of the specimen.
  - Other input files with no conditions/parameters. For example meshes.
  - VALIMAT<sup>®</sup> python script for running the job and copying the files (Requires no modification and can be copied from any other model).



# **Overview – User defined input deck**

General structure


A component bending test with a non-standard setup that is not implemented in VALIMAT<sup>®</sup>.

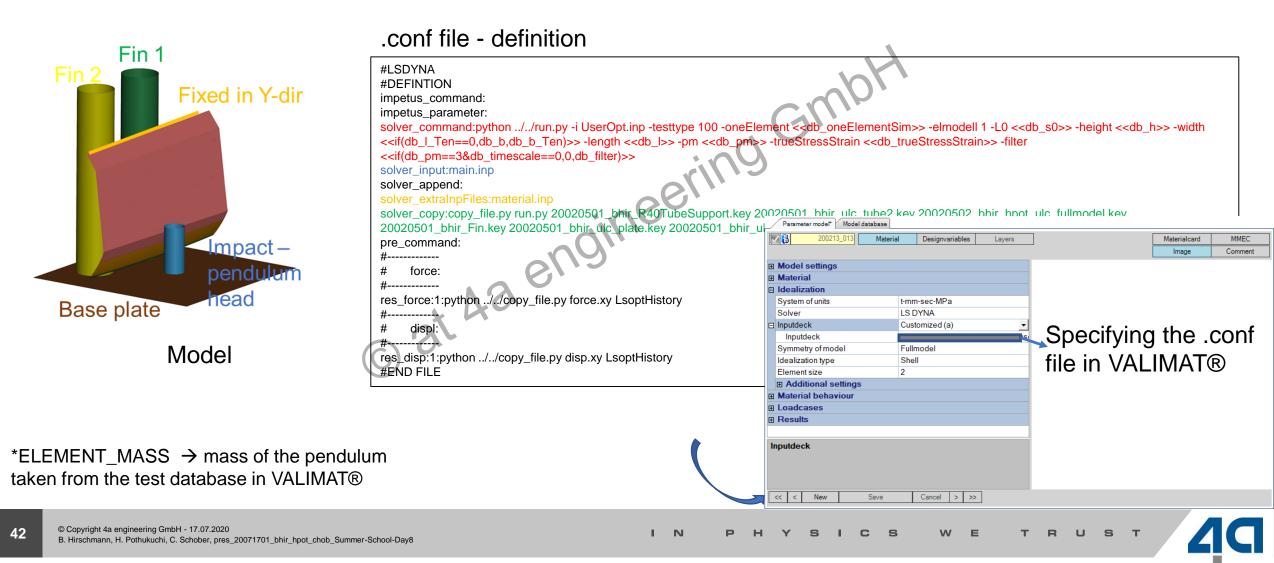




## **Overview – User defined input deck** Example

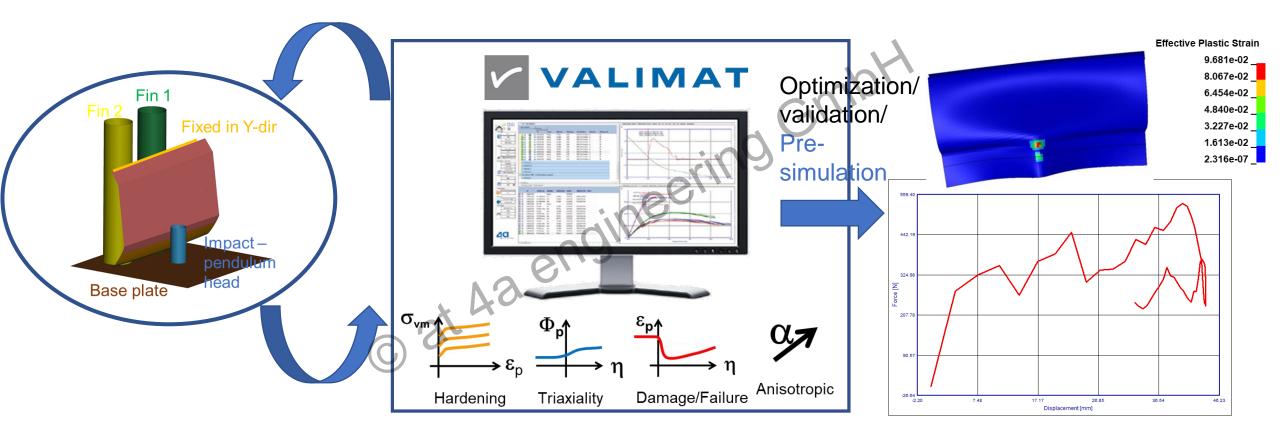
A component bending test with a non-standard setup that is not implemented in VALIMAT<sup>®</sup>.




\*Renumber PIDs, node and element sets in a VALIMAT® friendly format!

For optimization/validation/pre-simulation  $\rightarrow$  the test database is updated and contains the necessary fields referenced in the loadcases tab under the model database




### **Overview – User defined input deck** Example

A component bending test with a non-standard setup that is not implemented in VALIMAT<sup>®</sup>.



# **Overview – User defined input deck** Example

A component bending test with a non-standard setup that is not implemented in VALIMAT<sup>®</sup>.







### Thank you for your Attention!

Python: a powerful tool with VALIMAT®, user defined material cards/specimen

survey: Please give us your personal feedback

You Tube



more information on our software





