Multi-physical characterization and simulation of battery cells for predicting abuse scenarios

Martin Schwab

Battery Day 2022

excellence in plastics simulation testing equipment lightweight products

Testing and Identification

3

- 1. Generation of abuse simulation models of a single battery cell using LS Dyna
- 2. Abuse testing and simulation of a single battery cell
- 3. Application of a single cell model within the simulation of multi-cell mockups
- 4. Conclusion and outlook

Generation of abuse simulation models of a single battery cell using LS Dyna

Multiphysics of battery cells

 ϑ

T

Modeling approaches in LS DYNA

	Solid layer model	Tshell model	Batmac model
Keyword	*EM_RANDLES_SOLID	*EM_RANDLES_TSHELL	*EM_RANDLES_BATMAC
Characteristics	 + Analysis of the different layers is possible - Computational effort 	 + Benefical modeling of thin cells - Behavior of the layers can not be analyzed in detail 	 Hodeling with respect to mechanical and thermal problem Behavior of the layers can not be analyzed

Electrical modelling and characterization

electrical behavior is covered by a circuit model

parameter as well as the OCV-SOC curve are identified from the 4a HPPC test

8

Characteristic of the abuse of a battery cell

Course of voltage and temperature because of overheating

- Characteristic points and effects:
 - **Internal short circuit:** drop of the voltage
 - **Exothermic reaction**: spontaneous increase of the temperature

Abuse simulation of a single cell

Modeling of the internal short circuit and the exothermal reaction

Abuse testing and simulation of a single battery cell

Overheat test of a single battery cell

- Overheating of a fully charged 18650 battery cell (Panasonic NCR18650B) at the bottom
- Measurement of the temperature at the cell as well as in the chamber with 6 thermocouples
- Measurement of the voltage

Overheat test of a single battery cell

18650 battery cell

fully charged overheating at bottom

Overheat test of a single battery cell

Overheat test of a single battery cell Experimental results

Overheat test of a single battery cell Comparison of experimental and simulative data

16

Application of a single cell model within the simulation of multi-cell mockups

Mockup with equal distances Experimental investigation

- Thermal runaway of the center cell induced by heating with a heating wire
- Temperature and voltage measurement at each cell
- Video recording with high-speed camera

S

UST

R

Mockup with equal distances Experimental investigation

Mock-up with seven 18650 battery cells

equal distances

Mockup with equal distances Experimental investigation

Mockup with equal distances Experimental investigation – behavior of all cells

*Thermocouple at cell 6 was broken within the test

Mockup with equal distances Experimental investigation – behavior of all cells

*Thermocouple at cell 6 was broken within the test

Mockup with equal distances Experimental investigation – behavior of cell 1 and 2

Mockup with equal distances Simulation results

 \cdot experiment — simulation

Mockup with different distances Experimental investigation

- Thermal runaway of the center cell induced by heating with a heating wire
- Temperature and voltage measurement at each cell
- Video recording with high-speed camera

Mockup with different distances Experimental investigation

Mock-up with seven 18650 battery cells

different distances

Mockup with different distances Experimental investigation – behavior of all cells

Mockup with different distances Experimental investigation – behavior of all cells

Mockup with different distances Simulation results

 \cdot experiment — simulation

Conclusion and outlook

Conclusion

Outlook

- Development of test setups for further characterizations of battery cells especially within the thermal runaway
- Automatic identification of the parameters required for the resulting FE model
- Optimization of battery packs addressing the thermal propagation behavior

Conclusion

Outlook

- Development of test setups for further characterizations of battery cells especially within the thermal runaway
- Automatic identification of the parameters required for the resulting FE model
- Optimization of battery packs addressing the thermal propagation behavior

Improve your developments with our expertise in testing and simulation!

US н N

Martin Schwab

martin.schwab@4a.at +43 (664) 80106 640

