

Integrative Simulation von kurzfaserverstärkten Thermoplasten am Beispiel einer Tankklappe

M. Gramling, V. Carrillo-Gonzalez (Audi AG)

P. Reithofer, C. Wüster (4a engineering GmbH)

Integrative Simulation von kurzfaserverstärkten Thermoplasten am Beispiel einer Tankklappe

Inhalt

- Steifigkeits-/Festigkeitsanforderung
- Spritzgusssimulation
- Biegeprüfung
- Materialeigenschaften
- Integrative Simulation
- Bauteil-Validierung

Steifigkeits-/Festigkeitsanforderung

Lastfallbeschreibung

Biegesteifigkeit

Torsionssteifigkeit

Steifigkeits-/Festigkeitsanforderung Potentialanalyse

Torsionssteifigkeit Biegesteifigkeit [Stress components (S): Von Mises @ Max]:STEIFIGKEIT_TKL_AU573: Load Case: BIEGUNG_25N [Stress components (S): Von Mises @ Max]:STEIFIGKEIT_TKL_AU573: Load Case: TORSION_OBEN_40N 0.000 0.000 0.661 1.333 0.667 2.000 1.333 2.667 2.000 3.333 2.667 4.000 3.333 4.667 4.000 5.333 4.667 6.000 5.333 6.667 6.000 7.333 6.667 8.000 7.333 8.667 8.000 9.333 8.667 10.000 9.333 10.000 State 11 Degrees 300.000000: STEIFIGKEIT_TKL_AU573: Load Case: TORSION_OBEN_40N State 10 Degrees 270.000000: STEIFIGKEIT_TKL_AU573: Load Case: TORSION_OBEN_40N

Ca. 82% der Nachgiebigkeit kommt aus dem Scharnierarm

4 M.Gramling, V.Carrillo-Gonzalez, P.Reithofer, C.Wüster

Steifigkeits-/Festigkeitsanforderung Topologieoptimierung

Spritzgusssimulation

Modellaufbau

- Fusion Modell: 60.160 Elemente (12 Layer)
- <u>3D-Modell</u>: 940.187 Elemente
- Mesh Density: 0,7-2mm (abhängig vom Geometriebereich)
- Der Anguss wurde mit Beam- Elementen realisiert und als Heißkanal ausmodelliert.

Audi Vorsprung durch Technik

Scale (300 mm)

164 179 -67

Rippen feiner verne

Scale (100 mm)

Autodesk[.]

Spritzgusssimulation Ergebnisse

Gegenüberstellung der Füllzeiten zwischen 3D-Mesh und Fusion Modell:

Spritzgusssimulation

Vergleich Faserorientierungen

Detail der Faserorientierungsverteilung:

Biegeprüfung Messergebnisse: Kraft-Weg

Im Diagramm sind die gemessenen Kraft-Weg Kennlinien für unterschiedliche

- Entnahmepositionen
- Konditionierungszustände (trocken, feucht wie angeliefert ~0,6%)
- ► Faserorientierungen

dargestellt.

G längs 0,6% Feuchte K längs 0,6% Feuchte K längs trocken K quer trocken

Biegeprüfung Messergebnis E-Modul

Die aus den Messungen bestimmten Moduli zeigen eine Abhängigkeit von Feuchte und Faserorientierung. Die hohe Streubreite aus dem Bereich K des Materials PA6-GF50 wird noch näher untersucht.

16000 -	 PA6-GF50 quer K trocken PA6-GF50 längs K feucht 		Bereich	E-Modul [MPa]	STBW [MPa]		
14000 -	 PA6-GF50 längs K test trocken 		K Quer Trocken	5173	600		
12000 -	PPE/PA		K Längs Trocken	10531	3000		
10000 -			K Längs Feucht	8867	3200		
8000 -			G Längs Feucht	10039	1350		
6000 -			Abdeckung	1946	120		
4000 -	Feuchte 0.6%		233111111				
2000							
0 -	PA6 GF50						

Materialkennwerte

Materialdatenblatt It. Hersteller

50% Glasfaser verstärktes PA6

Grilon BG-50 S PA6-GF50 EMS Grivory

Mechanical properties	dry / cond	Unit	Test Standard
Tensile Modulus	17500 / 11500	MPa	ISO 527-1/-2
Stress at break	245 / 165	MPa	ISO 527-1/-2
Strain at break	3/6	96	ISO 527-1/-2
Charpy impact strength (+23°C)	90 / 95	kJ/m²	ISO 179/1eU
Charpy impact strength (-30°C)	85 / 90	kJ/m²	ISO 179/1eU
Charpy notched impact strength (+23°C)	15 / 25	kJ/m²	ISO 179/1eA
Charpy notched impact strength (-30°C)	11 / 12	kJ/m²	ISO 179/1eA
	dry / cond	Unit	Tost Standard
Melting temperature (10°C/min)	222 / *	*C	ISO 11357-1/-3
Temp, of deflection under load (1.80 MPa)	210 / *	•C	190 75-1/-2
Temp, of deflection under load (8.00 MPa)	170 / *	°C	180 75-1/-2
Burning Behav, at thickness h	HR/*	dass	IEC 80895-11-10
Thickness tested	0.9/*	0,355	IEC 80895 11 10
THICKNESS tested	0.87-	mm	IEC 00035-11-10
Electrical properties	dry / cond	Unit	Test Standard
Volume resistivity	1E12 / 1E12	Ohm*m	IEC 60093
Surface resistivity	* / 1E12	Ohm	IEC 60093
Electric strength	40 / 37	kV/mm	IEC 60243-1
Comparative tracking index	- / 575	-	IEC 60112
Other properties	dry/cond	Unit	Test Standard
Water absorption	5/*	%	Sim to ISO 82
Humidity absorption	15/*	96	Sim to ISO 82
Density	1580 /	ka/m3	ISO 1183
Density	15807-	v8	155 1165

Unverstärktes PA6

Grilon BS PA6 EMS Grivory

Mechanical properties	dry / cond	Unit	Test Standard
Tensile Modulus	3000 / 1000	MPa	ISO 527-1/-2
Yield stress	80 / 40	MPa	ISO 527-1/-2
Yield strain	4 / 15	%	ISO 527-1/-2
Nominal strain at break	15 / >50	%	ISO 527-1/-2
Charpy impact strength (+23°C)	N / N	kJ/m²	ISO 179/1eU
Charpy notched impact strength (+23°C)	5/30	kJ/m²	ISO 179/1eA
Charpy notched impact strength (-30°C)	5/4	kJ/m²	ISO 179/1eA
Thermal properties	dry / cond	Unit	Test Standard
Melting temperature (10°C/min)	222 / *	°C	ISO 11357-1/-3
Temp. of deflection under load (1.80 MPa)	60 / *	°C	ISO 75-1/-2
Temp. of deflection under load (0.45 MPa)	175 / *	°C	ISO 75-1/-2
Burning Behav. at thickness h	HB / *	class	IEC 60695-11-10
Thickness tested	0.8 / *	mm	IEC 60695-11-10
Electrical properties	dry / cond	Unit	Test Standard
Volume resistivity	1E11 / 1E9	Ohm*m	IEC 60093
Surface resistivity	* / 1E11	Ohm	IEC 60093
Electric strength	30 / 27	kV/mm	IEC 60243-1
Comparative tracking index	600 / 600	-	IEC 60112
Other properties	dry / cond	Unit	Test Standard
Water absorption	9 / *	%	Sim. to ISO 62
Humidity absorption	3 / *	%	Sim. to ISO 62
Density	1130 / -	kg/m³	ISO 1183

Quelle: Campus www.campusplastics.com

Einflussparameter

Temperatur / Feuchte (Quelle Campus Materialdatenbank)

Abnahme des Schubmoduls im luftfeuchten Zustand um ca. 30% (RT)

Bei Temperaturzunahme von 50°C (von RT) Abnahme des Schubmoduls um ca. 80% (konditioniert)

Je nach Verteilung der Faserorientierung verringert sich der E-Modul quer zur Hauptorientierungsrichtung bis zu 70% (Extremfall einheitliche Orientierung)

Materialeigenschaften MicroMec

13 M.Gramling, V.Carrillo-Gonzalez, P.Reithofer, C.Wüster

Aud

Vorsprung durch Technik

Materialeigenschaften

Faserorientierung in typischen Bereichen

Steifigkeit längs in Abhängigkeit

Steifigkeit längs in Abhängigkeit

Steifigkeit längs in Abhängigkeit

Steifigkeit längs in Abhängigkeit

Steifigkeit quer in Abhängigkeit

Integrative Simulation

Idealisierung, Mapping

Young's

Modul

Integrative Simulation

Orthotropes gemapptes Material

Mittlere Faserorientierung wird analog gemappt. Neben dem 1. Eigenvektor wird der 1. Eigenwert berechnet. Mittels dem 1. Eigenwert a11 wird ein Material zugeordnet.

Integrative Simulation

Mapping - Vergleich Strömungs- mit Struktursimulation

Integrative Simulation

Vergleich Materialprüfung – Simulation (Herstellerangaben vs. Integrativ)

- Zum Überprüfen der Methode und zum Anpassen von Materialparametern (Matrixeigenschaften) in der Mikromechanik werden im ersten Schritt die durchgeführten 3-Punkt Biegeversuche nachsimuliert.
- Unterschiedliche Entnahmepositionen (längs vs. quer) und Probenkonditionierungen wurden für elastische isotrope bzw. orthotrope Idealisierung untersucht.
- Insbesondere im Lastfall quer kann gezeigt werden, dass sich die integrative Simulation lohnt. Im Lastfall längs feucht zeigt sich, dass die mechanischen Kenngrößen der Matrix noch angepasst werden müssen.

Bauteil – Validierung Biegesteifigkeits- / Torsionssteifigkeitsprüfung

Typischer Versuchsaufbau Gesamtfahrzeug (Systemsteifigkeit):

Eigene Vorrichtung am Prüffeld 4a (Untersuchung Bauteilsteifigkeit):

Bauteil – Validierung

aktuelle Zwischenergebnisse Lastfall Biegung

Die isotrope Simulation mit den Materialkennwerten laut Herstellerangaben zeigt ein zu steifes Verhalten, auch unter Berücksichtigung eines aufgrund der Faserorientierung abgeminderten E-Moduls (trocken ~10000 MPa).

Obwohl die Werte der integrativen Simulation etwas unter den Werten der Pr
üfungen liegen, kann das Verhalten der Bauteile gut abgebildet werden.

Abb.: Randbedingung Biegung

Abb.: Bereich Scharnierachse

Bauteil – Validierung

aktuelle Zwischenergebnisse Lastfall Torsion

- Die isotrope Simulation mit den Materialkennwerten laut Herstellerangaben zeigt ein zu steifes Verhalten, auch Unterberücksichtigung eines aufgrund der Faserorientierung abgeminderten E-Moduls (trocken ~10000 MPa)
- Obwohl die Werte der integrativen Simulation etwas unter den Werten der Pr
 üfungen liegen, kann das Verhalten der Bauteile gut abgebildet werden.

Abb.: Verschiebung Torsionssimulation

Abb.: Randbedingungen Torsion

Integrative Simulation von kurzfaserverstärkten Thermoplasten am Beispiel einer Tankklappe

Vielen Dank!